AOMedia AV1 Codec
blockd.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43 
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45 
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47 
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52  DIFFWTD_38 = 0,
53  DIFFWTD_38_INV,
54  DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56 
57 enum {
58  KEY_FRAME = 0,
59  INTER_FRAME = 1,
60  INTRA_ONLY_FRAME = 2, // replaces intra-only
61  S_FRAME = 3,
62  FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64 
65 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68 
69 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72 
73 typedef struct {
74  uint8_t *plane[MAX_MB_PLANE];
75  int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77 
78 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
81 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84 
85 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86  static const PREDICTION_MODE lut[] = {
87  DC_PRED, // DC_PRED
88  V_PRED, // V_PRED
89  H_PRED, // H_PRED
90  D45_PRED, // D45_PRED
91  D135_PRED, // D135_PRED
92  D113_PRED, // D113_PRED
93  D157_PRED, // D157_PRED
94  D203_PRED, // D203_PRED
95  D67_PRED, // D67_PRED
96  SMOOTH_PRED, // SMOOTH_PRED
97  SMOOTH_V_PRED, // SMOOTH_V_PRED
98  SMOOTH_H_PRED, // SMOOTH_H_PRED
99  PAETH_PRED, // PAETH_PRED
100  NEARESTMV, // NEARESTMV
101  NEARMV, // NEARMV
102  GLOBALMV, // GLOBALMV
103  NEWMV, // NEWMV
104  NEARESTMV, // NEAREST_NEARESTMV
105  NEARMV, // NEAR_NEARMV
106  NEARESTMV, // NEAREST_NEWMV
107  NEWMV, // NEW_NEARESTMV
108  NEARMV, // NEAR_NEWMV
109  NEWMV, // NEW_NEARMV
110  GLOBALMV, // GLOBAL_GLOBALMV
111  NEWMV, // NEW_NEWMV
112  };
113  assert(NELEMENTS(lut) == MB_MODE_COUNT);
114  assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115  return lut[mode];
116 }
117 
118 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119  static const PREDICTION_MODE lut[] = {
120  MB_MODE_COUNT, // DC_PRED
121  MB_MODE_COUNT, // V_PRED
122  MB_MODE_COUNT, // H_PRED
123  MB_MODE_COUNT, // D45_PRED
124  MB_MODE_COUNT, // D135_PRED
125  MB_MODE_COUNT, // D113_PRED
126  MB_MODE_COUNT, // D157_PRED
127  MB_MODE_COUNT, // D203_PRED
128  MB_MODE_COUNT, // D67_PRED
129  MB_MODE_COUNT, // SMOOTH_PRED
130  MB_MODE_COUNT, // SMOOTH_V_PRED
131  MB_MODE_COUNT, // SMOOTH_H_PRED
132  MB_MODE_COUNT, // PAETH_PRED
133  MB_MODE_COUNT, // NEARESTMV
134  MB_MODE_COUNT, // NEARMV
135  MB_MODE_COUNT, // GLOBALMV
136  MB_MODE_COUNT, // NEWMV
137  NEARESTMV, // NEAREST_NEARESTMV
138  NEARMV, // NEAR_NEARMV
139  NEWMV, // NEAREST_NEWMV
140  NEARESTMV, // NEW_NEARESTMV
141  NEWMV, // NEAR_NEWMV
142  NEARMV, // NEW_NEARMV
143  GLOBALMV, // GLOBAL_GLOBALMV
144  NEWMV, // NEW_NEWMV
145  };
146  assert(NELEMENTS(lut) == MB_MODE_COUNT);
147  assert(is_inter_compound_mode(mode));
148  return lut[mode];
149 }
150 
151 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153  mode == NEW_NEARMV);
154 }
155 
156 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158  mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160 
161 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164 
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166  modes for the Y blocks to the left and above us; for interframes, there
167  is a single probability table. */
168 
169 typedef struct {
170  // Value of base colors for Y, U, and V
171  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172  // Number of base colors for Y (0) and UV (1)
173  uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175 
176 typedef struct {
177  FILTER_INTRA_MODE filter_intra_mode;
178  uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180 
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184 
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188 
189 typedef struct RD_STATS {
190  int rate;
191  int zero_rate;
192  int64_t dist;
193  // Please be careful of using rdcost, it's not guaranteed to be set all the
194  // time.
195  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196  // these functions, make sure rdcost is always up-to-date according to
197  // rate/dist.
198  int64_t rdcost;
199  int64_t sse;
200  uint8_t skip_txfm; // sse should equal to dist when skip_txfm == 1
201 #if CONFIG_RD_DEBUG
202  int txb_coeff_cost[MAX_MB_PLANE];
203 #endif // CONFIG_RD_DEBUG
204 } RD_STATS;
205 
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209  uint8_t *seg_mask;
210  int8_t wedge_index;
211  int8_t wedge_sign;
212  DIFFWTD_MASK_TYPE mask_type;
213  COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215 
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
218 
222 typedef struct MB_MODE_INFO {
223  /*****************************************************************************
224  * \name General Info of the Coding Block
225  ****************************************************************************/
228  BLOCK_SIZE bsize;
230  PARTITION_TYPE partition;
232  PREDICTION_MODE mode;
234  UV_PREDICTION_MODE uv_mode;
239  /*****************************************************************************
240  * \name Inter Mode Info
241  ****************************************************************************/
244  int_mv mv[2];
246  MV_REFERENCE_FRAME ref_frame[2];
248  int_interpfilters interp_filters;
250  MOTION_MODE motion_mode;
252  uint8_t num_proj_ref;
257  WarpedMotionParams wm_params;
259  INTERINTRA_MODE interintra_mode;
263  INTERINTER_COMPOUND_DATA interinter_comp;
266  /*****************************************************************************
267  * \name Intra Mode Info
268  ****************************************************************************/
272  int8_t angle_delta[PLANE_TYPES];
274  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
278  uint8_t cfl_alpha_idx;
280  PALETTE_MODE_INFO palette_mode_info;
283  /*****************************************************************************
284  * \name Transform Info
285  ****************************************************************************/
288  uint8_t skip_txfm;
290  TX_SIZE tx_size;
292  TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
295  /*****************************************************************************
296  * \name Loop Filter Info
297  ****************************************************************************/
302  int8_t delta_lf[FRAME_LF_COUNT];
305  /*****************************************************************************
306  * \name Bitfield for Memory Reduction
307  ****************************************************************************/
310  uint8_t segment_id : 3;
312  uint8_t seg_id_predicted : 1;
314  uint8_t ref_mv_idx : 2;
316  uint8_t skip_mode : 1;
318  uint8_t use_intrabc : 1;
320  uint8_t comp_group_idx : 1;
322  uint8_t compound_idx : 1;
324  uint8_t use_wedge_interintra : 1;
326  int8_t cdef_strength : 4;
329 #if CONFIG_RD_DEBUG
330 
331  RD_STATS rd_stats;
333  int mi_row;
335  int mi_col;
336 #endif
337 #if CONFIG_INSPECTION
338 
339  int16_t tx_skip[TXK_TYPE_BUF_LEN];
340 #endif
341 } MB_MODE_INFO;
342 
345 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346  return mbmi->use_intrabc;
347 }
348 
349 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350  assert(mode < UV_INTRA_MODES);
351  static const PREDICTION_MODE uv2y[] = {
352  DC_PRED, // UV_DC_PRED
353  V_PRED, // UV_V_PRED
354  H_PRED, // UV_H_PRED
355  D45_PRED, // UV_D45_PRED
356  D135_PRED, // UV_D135_PRED
357  D113_PRED, // UV_D113_PRED
358  D157_PRED, // UV_D157_PRED
359  D203_PRED, // UV_D203_PRED
360  D67_PRED, // UV_D67_PRED
361  SMOOTH_PRED, // UV_SMOOTH_PRED
362  SMOOTH_V_PRED, // UV_SMOOTH_V_PRED
363  SMOOTH_H_PRED, // UV_SMOOTH_H_PRED
364  PAETH_PRED, // UV_PAETH_PRED
365  DC_PRED, // UV_CFL_PRED
366  INTRA_INVALID, // UV_INTRA_MODES
367  INTRA_INVALID, // UV_MODE_INVALID
368  };
369  return uv2y[mode];
370 }
371 
372 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
373  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374 }
375 
376 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
377  return mbmi->ref_frame[1] > INTRA_FRAME;
378 }
379 
380 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382  (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383 }
384 
385 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386  static const MV_REFERENCE_FRAME lut[] = {
387  LAST_FRAME, // LAST_LAST2_FRAMES,
388  LAST_FRAME, // LAST_LAST3_FRAMES,
389  LAST_FRAME, // LAST_GOLDEN_FRAMES,
390  BWDREF_FRAME, // BWDREF_ALTREF_FRAMES,
391  LAST2_FRAME, // LAST2_LAST3_FRAMES
392  LAST2_FRAME, // LAST2_GOLDEN_FRAMES,
393  LAST3_FRAME, // LAST3_GOLDEN_FRAMES,
394  BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES,
395  ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES,
396  };
397  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398  return lut[ref_idx];
399 }
400 
401 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402  static const MV_REFERENCE_FRAME lut[] = {
403  LAST2_FRAME, // LAST_LAST2_FRAMES,
404  LAST3_FRAME, // LAST_LAST3_FRAMES,
405  GOLDEN_FRAME, // LAST_GOLDEN_FRAMES,
406  ALTREF_FRAME, // BWDREF_ALTREF_FRAMES,
407  LAST3_FRAME, // LAST2_LAST3_FRAMES
408  GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES,
409  GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES,
410  ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES,
411  ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES,
412  };
413  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414  return lut[ref_idx];
415 }
416 
417 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418 
419 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420 
421 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422  TransformationType type) {
423  const PREDICTION_MODE mode = mbmi->mode;
424  const BLOCK_SIZE bsize = mbmi->bsize;
425  const int block_size_allowed =
426  AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428  block_size_allowed;
429 }
430 
431 #if CONFIG_MISMATCH_DEBUG
432 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433  int mi_row, int tx_blk_col, int tx_blk_row,
434  int subsampling_x, int subsampling_y) {
435  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436  (tx_blk_col << MI_SIZE_LOG2);
437  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438  (tx_blk_row << MI_SIZE_LOG2);
439 }
440 #endif
441 
442 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443 
444 struct buf_2d {
445  uint8_t *buf;
446  uint8_t *buf0;
447  int width;
448  int height;
449  int stride;
450 };
451 
452 typedef struct eob_info {
453  uint16_t eob;
454  uint16_t max_scan_line;
455 } eob_info;
456 
457 typedef struct {
458  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459  eob_info eob_data[MAX_MB_PLANE]
460  [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462 } CB_BUFFER;
463 
464 typedef struct macroblockd_plane {
465  PLANE_TYPE plane_type;
466  int subsampling_x;
467  int subsampling_y;
468  struct buf_2d dst;
469  struct buf_2d pre[2];
470  ENTROPY_CONTEXT *above_entropy_context;
471  ENTROPY_CONTEXT *left_entropy_context;
472 
473  // The dequantizers below are true dequantizers used only in the
474  // dequantization process. They have the same coefficient
475  // shift/scale as TX.
476  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477  // Pointer to color index map of:
478  // - Current coding block, on encoder side.
479  // - Current superblock, on decoder side.
480  uint8_t *color_index_map;
481 
482  // block size in pixels
483  uint8_t width, height;
484 
485  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487 } MACROBLOCKD_PLANE;
488 
489 #define BLOCK_OFFSET(i) ((i) << 4)
490 
494 typedef struct {
498  DECLARE_ALIGNED(16, InterpKernel, vfilter);
499 
503  DECLARE_ALIGNED(16, InterpKernel, hfilter);
504 } WienerInfo;
505 
507 typedef struct {
511  int ep;
512 
516  int xqd[2];
517 } SgrprojInfo;
518 
521 #if CONFIG_DEBUG
522 #define CFL_SUB8X8_VAL_MI_SIZE (4)
523 #define CFL_SUB8X8_VAL_MI_SQUARE \
524  (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
525 #endif // CONFIG_DEBUG
526 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
527 #define CFL_BUF_LINE (32)
528 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
529 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
530 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
531 typedef struct cfl_ctx {
532  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
533  // shifts)
534  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
535  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
536  int16_t ac_buf_q3[CFL_BUF_SQUARE];
537 
538  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
539  // for every scaling parameter
540  int dc_pred_is_cached[CFL_PRED_PLANES];
541  // The DC_PRED cache is disable when decoding
542  int use_dc_pred_cache;
543  // Only cache the first row of the DC_PRED
544  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
545 
546  // Height and width currently used in the CfL prediction buffer.
547  int buf_height, buf_width;
548 
549  int are_parameters_computed;
550 
551  // Chroma subsampling
552  int subsampling_x, subsampling_y;
553 
554  // Whether the reconstructed luma pixels need to be stored
555  int store_y;
556 } CFL_CTX;
557 
558 typedef struct dist_wtd_comp_params {
559  int use_dist_wtd_comp_avg;
560  int fwd_offset;
561  int bck_offset;
562 } DIST_WTD_COMP_PARAMS;
563 
564 struct scale_factors;
565 
574 typedef struct macroblockd {
579  int mi_row;
580  int mi_col;
587 
606 
610  struct macroblockd_plane plane[MAX_MB_PLANE];
611 
615  TileInfo tile;
616 
622 
639 
664 
670  uint8_t *tx_type_map;
676 
691  const struct scale_factors *block_ref_scale_factors[2];
692 
700 
707  ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
714  ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
715 
722  PARTITION_CONTEXT *above_partition_context;
729  PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
730 
737  TXFM_CONTEXT *above_txfm_context;
744  TXFM_CONTEXT *left_txfm_context;
751  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
752 
761  WienerInfo wiener_info[MAX_MB_PLANE];
762  SgrprojInfo sgrproj_info[MAX_MB_PLANE];
769  uint8_t width;
770  uint8_t height;
780  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
785  uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
786 
797 
802  uint8_t neighbors_ref_counts[REF_FRAMES];
803 
807  FRAME_CONTEXT *tile_ctx;
808 
812  int bd;
813 
817  int qindex[MAX_SEGMENTS];
821  int lossless[MAX_SEGMENTS];
833 
838 
842  struct aom_internal_error_info *error_info;
843 
847  const WarpedMotionParams *global_motion;
848 
872  int8_t delta_lf[FRAME_LF_COUNT];
889 
893  uint8_t *seg_mask;
894 
898  CFL_CTX cfl;
899 
910 
920  CONV_BUF_TYPE *tmp_conv_dst;
931  uint8_t *tmp_obmc_bufs[2];
932 } MACROBLOCKD;
933 
936 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
937 #if CONFIG_AV1_HIGHBITDEPTH
938  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
939 #else
940  (void)xd;
941  return 0;
942 #endif
943 }
944 
945 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
946 #if CONFIG_AV1_HIGHBITDEPTH
947  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
948  ? CONVERT_TO_BYTEPTR(buf16)
949  : buf16;
950 #else
951  (void)xd;
952  return buf16;
953 #endif
954 }
955 
956 typedef struct BitDepthInfo {
957  int bit_depth;
963  int use_highbitdepth_buf;
964 } BitDepthInfo;
965 
966 static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
967  BitDepthInfo bit_depth_info;
968  bit_depth_info.bit_depth = xd->bd;
969  bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
970  assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
971  bit_depth_info.bit_depth == 8));
972  return bit_depth_info;
973 }
974 
975 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
976  switch (bsize) {
977  case BLOCK_4X4: return 0;
978  case BLOCK_8X8: return 1;
979  case BLOCK_16X16: return 2;
980  case BLOCK_32X32: return 3;
981  case BLOCK_64X64: return 4;
982  case BLOCK_128X128: return 5;
983  default: return SQR_BLOCK_SIZES;
984  }
985 }
986 
987 // For a square block size 'bsize', returns the size of the sub-blocks used by
988 // the given partition type. If the partition produces sub-blocks of different
989 // sizes, then the function returns the largest sub-block size.
990 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
991 // Conversion tables).
992 // Note: the input block size should be square.
993 // Otherwise it's considered invalid.
994 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
995  PARTITION_TYPE partition) {
996  if (partition == PARTITION_INVALID) {
997  return BLOCK_INVALID;
998  } else {
999  const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
1000  return sqr_bsize_idx >= SQR_BLOCK_SIZES
1001  ? BLOCK_INVALID
1002  : subsize_lookup[partition][sqr_bsize_idx];
1003  }
1004 }
1005 
1006 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1007  PLANE_TYPE plane_type) {
1008  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1009  DCT_DCT, // DC_PRED
1010  ADST_DCT, // V_PRED
1011  DCT_ADST, // H_PRED
1012  DCT_DCT, // D45_PRED
1013  ADST_ADST, // D135_PRED
1014  ADST_DCT, // D113_PRED
1015  DCT_ADST, // D157_PRED
1016  DCT_ADST, // D203_PRED
1017  ADST_DCT, // D67_PRED
1018  ADST_ADST, // SMOOTH_PRED
1019  ADST_DCT, // SMOOTH_V_PRED
1020  DCT_ADST, // SMOOTH_H_PRED
1021  ADST_ADST, // PAETH_PRED
1022  };
1023  const PREDICTION_MODE mode =
1024  (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1025  assert(mode < INTRA_MODES);
1026  return _intra_mode_to_tx_type[mode];
1027 }
1028 
1029 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1030 
1031 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1032  return bsize > BLOCK_4X4;
1033 }
1034 
1035 // Number of transform types in each set type
1036 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1037  1, 2, 5, 7, 12, 16,
1038 };
1039 
1040 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1041  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1042  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1043  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1044  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1045  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1046  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1047 };
1048 
1049 // The bitmask corresponds to the transform types as defined in
1050 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1051 // the use of the corresponding transform type in that table.
1052 // The av1_derived_intra_tx_used_flag table is used when
1053 // use_reduced_intra_txset is set to 2, where one only searches
1054 // the transform types derived from residual statistics.
1055 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1056  0x0209, // DC_PRED: 0000 0010 0000 1001
1057  0x0403, // V_PRED: 0000 0100 0000 0011
1058  0x0805, // H_PRED: 0000 1000 0000 0101
1059  0x020F, // D45_PRED: 0000 0010 0000 1111
1060  0x0009, // D135_PRED: 0000 0000 0000 1001
1061  0x0009, // D113_PRED: 0000 0000 0000 1001
1062  0x0009, // D157_PRED: 0000 0000 0000 1001
1063  0x0805, // D203_PRED: 0000 1000 0000 0101
1064  0x0403, // D67_PRED: 0000 0100 0000 0011
1065  0x0205, // SMOOTH_PRED: 0000 0010 0000 1001
1066  0x0403, // SMOOTH_V_PRED: 0000 0100 0000 0011
1067  0x0805, // SMOOTH_H_PRED: 0000 1000 0000 0101
1068  0x0209, // PAETH_PRED: 0000 0010 0000 1001
1069 };
1070 
1071 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1072  0x080F, // DC_PRED: 0000 1000 0000 1111
1073  0x040F, // V_PRED: 0000 0100 0000 1111
1074  0x080F, // H_PRED: 0000 1000 0000 1111
1075  0x020F, // D45_PRED: 0000 0010 0000 1111
1076  0x080F, // D135_PRED: 0000 1000 0000 1111
1077  0x040F, // D113_PRED: 0000 0100 0000 1111
1078  0x080F, // D157_PRED: 0000 1000 0000 1111
1079  0x080F, // D203_PRED: 0000 1000 0000 1111
1080  0x040F, // D67_PRED: 0000 0100 0000 1111
1081  0x080F, // SMOOTH_PRED: 0000 1000 0000 1111
1082  0x040F, // SMOOTH_V_PRED: 0000 0100 0000 1111
1083  0x080F, // SMOOTH_H_PRED: 0000 1000 0000 1111
1084  0x0C0E, // PAETH_PRED: 0000 1100 0000 1110
1085 };
1086 
1087 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1088  0x0001, // 0000 0000 0000 0001
1089  0x0201, // 0000 0010 0000 0001
1090  0x020F, // 0000 0010 0000 1111
1091  0x0E0F, // 0000 1110 0000 1111
1092  0x0FFF, // 0000 1111 1111 1111
1093  0xFFFF, // 1111 1111 1111 1111
1094 };
1095 
1096 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1097  { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1098  { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1099 };
1100 
1101 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1102  int use_reduced_set) {
1103  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1104  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1105  if (tx_size_sqr_up == TX_32X32)
1106  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1107  if (use_reduced_set)
1108  return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1109  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1110  return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1111 }
1112 
1113 // Maps tx set types to the indices.
1114 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1115  { // Intra
1116  0, -1, 2, 1, -1, -1 },
1117  { // Inter
1118  0, 3, -1, -1, 2, 1 },
1119 };
1120 
1121 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1122  int use_reduced_set) {
1123  const TxSetType set_type =
1124  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1125  return ext_tx_set_index[is_inter][set_type];
1126 }
1127 
1128 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1129  int use_reduced_set) {
1130  const int set_type =
1131  av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1132  return av1_num_ext_tx_set[set_type];
1133 }
1134 
1135 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1136 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1137 
1138 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1139  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1140  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1141  if (bsize == BLOCK_4X4)
1142  return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1143  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1144  return max_rect_tx_size;
1145  else
1146  return largest_tx_size;
1147 }
1148 
1149 static const uint8_t mode_to_angle_map[] = {
1150  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1151 };
1152 
1153 // Converts block_index for given transform size to index of the block in raster
1154 // order.
1155 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1156  int block_idx) {
1157  // For transform size 4x8, the possible block_idx values are 0 & 2, because
1158  // block_idx values are incremented in steps of size 'tx_width_unit x
1159  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1160  // block number 1 in raster order, inside an 8x8 MI block.
1161  // For any other transform size, the two indices are equivalent.
1162  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1163 }
1164 
1165 // Inverse of above function.
1166 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
1167 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1168  int raster_order) {
1169  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1170  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1171  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1172 }
1173 
1174 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1175  const MACROBLOCKD *xd,
1176  TX_SIZE tx_size,
1177  int use_screen_content_tools) {
1178  const MB_MODE_INFO *const mbmi = xd->mi[0];
1179 
1180  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1181  xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1182  use_screen_content_tools)
1183  return DEFAULT_INTER_TX_TYPE;
1184 
1185  return intra_mode_to_tx_type(mbmi, plane_type);
1186 }
1187 
1188 // Implements the get_plane_residual_size() function in the spec (Section
1189 // 5.11.38. Get plane residual size function).
1190 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1191  int subsampling_x,
1192  int subsampling_y) {
1193  assert(bsize < BLOCK_SIZES_ALL);
1194  assert(subsampling_x >= 0 && subsampling_x < 2);
1195  assert(subsampling_y >= 0 && subsampling_y < 2);
1196  return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1197 }
1198 
1199 /*
1200  * Logic to generate the lookup tables:
1201  *
1202  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1203  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1204  * txs = sub_tx_size_map[txs];
1205  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1206  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1207  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1208  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1209  */
1210 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1211  int blk_col) {
1212  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1213  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1214  };
1215  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1216  0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1217  };
1218  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1219  0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1220  };
1221  const int index =
1222  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1223  (blk_col >> tw_w_log2_table[bsize]);
1224  assert(index < INTER_TX_SIZE_BUF_LEN);
1225  return index;
1226 }
1227 
1228 #if CONFIG_INSPECTION
1229 /*
1230  * Here is the logic to generate the lookup tables:
1231  *
1232  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1233  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1234  * txs = sub_tx_size_map[txs];
1235  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1236  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1237  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1238  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1239  */
1240 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1241  int blk_col) {
1242  static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1243  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1244  };
1245  static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1246  0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1247  };
1248  static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1249  0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1250  };
1251  const int index =
1252  ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1253  (blk_col >> tw_w_log2_table[bsize]);
1254  assert(index < TXK_TYPE_BUF_LEN);
1255  return index;
1256 }
1257 #endif // CONFIG_INSPECTION
1258 
1259 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1260  int blk_col, TX_SIZE tx_size,
1261  TX_TYPE tx_type) {
1262  const int stride = xd->tx_type_map_stride;
1263  xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1264 
1265  const int txw = tx_size_wide_unit[tx_size];
1266  const int txh = tx_size_high_unit[tx_size];
1267  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1268  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1269  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1270  // the intricacy, cover all the 16x16 units inside a 64 level transform.
1271  if (txw == tx_size_wide_unit[TX_64X64] ||
1272  txh == tx_size_high_unit[TX_64X64]) {
1273  const int tx_unit = tx_size_wide_unit[TX_16X16];
1274  for (int idy = 0; idy < txh; idy += tx_unit) {
1275  for (int idx = 0; idx < txw; idx += tx_unit) {
1276  xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1277  }
1278  }
1279  }
1280 }
1281 
1282 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1283  PLANE_TYPE plane_type, int blk_row,
1284  int blk_col, TX_SIZE tx_size,
1285  int reduced_tx_set) {
1286  const MB_MODE_INFO *const mbmi = xd->mi[0];
1287  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1288  return DCT_DCT;
1289  }
1290 
1291  TX_TYPE tx_type;
1292  if (plane_type == PLANE_TYPE_Y) {
1293  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1294  } else {
1295  if (is_inter_block(mbmi)) {
1296  // scale back to y plane's coordinate
1297  const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1298  blk_row <<= pd->subsampling_y;
1299  blk_col <<= pd->subsampling_x;
1300  tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1301  } else {
1302  // In intra mode, uv planes don't share the same prediction mode as y
1303  // plane, so the tx_type should not be shared
1304  tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1305  }
1306  const TxSetType tx_set_type =
1307  av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1308  if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1309  }
1310  assert(tx_type < TX_TYPES);
1311  assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1312  reduced_tx_set)][tx_type]);
1313  return tx_type;
1314 }
1315 
1316 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1317  const int num_planes);
1318 
1319 /*
1320  * Logic to generate the lookup table:
1321  *
1322  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1323  * int depth = 0;
1324  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1325  * depth++;
1326  * tx_size = sub_tx_size_map[tx_size];
1327  * }
1328  */
1329 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1330  static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1331  0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1332  };
1333  return bsize_to_max_depth_table[bsize];
1334 }
1335 
1336 /*
1337  * Logic to generate the lookup table:
1338  *
1339  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1340  * assert(tx_size != TX_4X4);
1341  * int depth = 0;
1342  * while (tx_size != TX_4X4) {
1343  * depth++;
1344  * tx_size = sub_tx_size_map[tx_size];
1345  * }
1346  * assert(depth < 10);
1347  */
1348 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1349  assert(bsize < BLOCK_SIZES_ALL);
1350  static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1351  0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1352  };
1353  const int depth = bsize_to_tx_size_depth_table[bsize];
1354  assert(depth <= MAX_TX_CATS);
1355  return depth - 1;
1356 }
1357 
1358 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1359  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1360  TX_SIZE tx_size = max_tx_size;
1361  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1362  return tx_size;
1363 }
1364 
1365 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1366  switch (tx_size) {
1367  case TX_64X64:
1368  case TX_64X32:
1369  case TX_32X64: return TX_32X32;
1370  case TX_64X16: return TX_32X16;
1371  case TX_16X64: return TX_16X32;
1372  default: return tx_size;
1373  }
1374 }
1375 
1376 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1377  int subsampling_y) {
1378  const BLOCK_SIZE plane_bsize =
1379  get_plane_block_size(bsize, subsampling_x, subsampling_y);
1380  assert(plane_bsize < BLOCK_SIZES_ALL);
1381  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1382  return av1_get_adjusted_tx_size(uv_tx);
1383 }
1384 
1385 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1386  const MB_MODE_INFO *mbmi = xd->mi[0];
1387  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1388  if (plane == 0) return mbmi->tx_size;
1389  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1390  return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1391  pd->subsampling_y);
1392 }
1393 
1394 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1395  const int num_planes);
1396 
1397 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1398 
1399 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1400 
1401 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1402  int blk_row, int blk_col,
1403  BLOCK_SIZE plane_bsize,
1404  TX_SIZE tx_size, void *arg);
1405 
1406 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1407  struct macroblockd_plane *pd, int plane,
1408  BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1409  int has_eob, int aoff, int loff);
1410 
1411 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
1412 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1413  return (mbmi->ref_frame[0] > INTRA_FRAME &&
1414  mbmi->ref_frame[1] == INTRA_FRAME);
1415 }
1416 
1417 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1418  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1419 }
1420 
1421 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1422  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1423 }
1424 
1425 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1426  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1427 }
1428 
1429 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1430  return is_interintra_allowed_bsize(mbmi->bsize) &&
1431  is_interintra_allowed_mode(mbmi->mode) &&
1432  is_interintra_allowed_ref(mbmi->ref_frame);
1433 }
1434 
1435 static INLINE int is_interintra_allowed_bsize_group(int group) {
1436  int i;
1437  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1438  if (size_group_lookup[i] == group &&
1439  is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1440  return 1;
1441  }
1442  }
1443  return 0;
1444 }
1445 
1446 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1447  return mbmi->ref_frame[0] > INTRA_FRAME &&
1448  mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1449 }
1450 
1451 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1452  int plane) {
1453  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1454  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1455  if (plane == 0) return max_txsize; // luma
1456  return av1_get_adjusted_tx_size(max_txsize); // chroma
1457 }
1458 
1459 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1460  assert(bsize < BLOCK_SIZES_ALL);
1461  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1462 }
1463 
1464 static INLINE int is_motion_variation_allowed_compound(
1465  const MB_MODE_INFO *mbmi) {
1466  return !has_second_ref(mbmi);
1467 }
1468 
1469 // input: log2 of length, 0(4), 1(8), ...
1470 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1471 
1472 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1473  return mbmi->overlappable_neighbors != 0;
1474 }
1475 
1476 static INLINE MOTION_MODE
1477 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1478  const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1479  if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1480  if (xd->cur_frame_force_integer_mv == 0) {
1481  const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1482  if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1483  }
1484  if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1485  is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1486  is_motion_variation_allowed_compound(mbmi)) {
1487  assert(!has_second_ref(mbmi));
1488  if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1490  !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1491  return WARPED_CAUSAL;
1492  }
1493  return OBMC_CAUSAL;
1494  }
1495  return SIMPLE_TRANSLATION;
1496 }
1497 
1498 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1499  return (is_inter_block(mbmi));
1500 }
1501 
1502 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1503  BLOCK_SIZE sb_type) {
1504  assert(sb_type < BLOCK_SIZES_ALL);
1505  return allow_screen_content_tools &&
1506  block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1507  block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1508  sb_type >= BLOCK_8X8;
1509 }
1510 
1511 // Returns sub-sampled dimensions of the given block.
1512 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1513 // differ from 'height' and 'width' when part of the block is outside the
1514 // right
1515 // and/or bottom image boundary.
1516 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1517  const MACROBLOCKD *xd, int *width,
1518  int *height,
1519  int *rows_within_bounds,
1520  int *cols_within_bounds) {
1521  const int block_height = block_size_high[bsize];
1522  const int block_width = block_size_wide[bsize];
1523  const int block_rows = (xd->mb_to_bottom_edge >= 0)
1524  ? block_height
1525  : (xd->mb_to_bottom_edge >> 3) + block_height;
1526  const int block_cols = (xd->mb_to_right_edge >= 0)
1527  ? block_width
1528  : (xd->mb_to_right_edge >> 3) + block_width;
1529  const struct macroblockd_plane *const pd = &xd->plane[plane];
1530  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1531  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1532  assert(block_width >= block_cols);
1533  assert(block_height >= block_rows);
1534  const int plane_block_width = block_width >> pd->subsampling_x;
1535  const int plane_block_height = block_height >> pd->subsampling_y;
1536  // Special handling for chroma sub8x8.
1537  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1538  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1539  if (width) {
1540  *width = plane_block_width + 2 * is_chroma_sub8_x;
1541  assert(*width >= 0);
1542  }
1543  if (height) {
1544  *height = plane_block_height + 2 * is_chroma_sub8_y;
1545  assert(*height >= 0);
1546  }
1547  if (rows_within_bounds) {
1548  *rows_within_bounds =
1549  (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1550  assert(*rows_within_bounds >= 0);
1551  }
1552  if (cols_within_bounds) {
1553  *cols_within_bounds =
1554  (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1555  assert(*cols_within_bounds >= 0);
1556  }
1557 }
1558 
1559 /* clang-format off */
1560 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1561 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1562  [CDF_SIZE(PALETTE_COLORS)];
1563 // Pointer to a const three-dimensional array whose first dimension is
1564 // PALETTE_SIZES.
1565 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1566 /* clang-format on */
1567 
1568 typedef struct {
1569  int rows;
1570  int cols;
1571  int n_colors;
1572  int plane_width;
1573  int plane_height;
1574  uint8_t *color_map;
1575  MapCdf map_cdf;
1576  ColorCost color_cost;
1577 } Av1ColorMapParam;
1578 
1579 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1580  const MB_MODE_INFO *mbmi) {
1581  int ref;
1582 
1583  // First check if all modes are GLOBALMV
1584  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1585 
1586  if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1587  return 0;
1588 
1589  // Now check if all global motion is non translational
1590  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1591  if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1592  }
1593  return 1;
1594 }
1595 
1596 static INLINE PLANE_TYPE get_plane_type(int plane) {
1597  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1598 }
1599 
1600 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1601  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1602  return 1024;
1603  }
1604  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1605  return 512;
1606  }
1607  return tx_size_2d[tx_size];
1608 }
1609 
1612 #ifdef __cplusplus
1613 } // extern "C"
1614 #endif
1615 
1616 #endif // AOM_AV1_COMMON_BLOCKD_H_
TileInfo tile
Definition: blockd.h:615
int8_t angle_delta[PLANE_TYPES]
Directional mode delta: the angle is base angle + (angle_delta * step).
Definition: blockd.h:272
int8_t interintra_wedge_index
The type of wedge used in interintra mode.
Definition: blockd.h:261
Parameters related to Wiener Filter.
Definition: blockd.h:494
MV_REFERENCE_FRAME ref_frame[2]
The reference frames for the MV.
Definition: blockd.h:246
SgrprojInfo sgrproj_info[3]
Definition: blockd.h:762
int mb_to_left_edge
Definition: blockd.h:681
CONV_BUF_TYPE * tmp_conv_dst
Definition: blockd.h:920
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:302
uint8_t ref_mv_idx
Which ref_mv to use.
Definition: blockd.h:314
uint8_t overlappable_neighbors
The number of overlapped neighbors above/left for obmc/warp motion mode.
Definition: blockd.h:255
int mi_row
Definition: blockd.h:579
FILTER_INTRA_MODE_INFO filter_intra_mode_info
The type of filter intra mode used (if applicable).
Definition: blockd.h:274
uint8_t * seg_mask
Definition: blockd.h:893
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:751
bool is_chroma_ref
Definition: blockd.h:605
const YV12_BUFFER_CONFIG * cur_buf
Definition: blockd.h:699
struct macroblockd_plane plane[3]
Definition: blockd.h:610
PREDICTION_MODE mode
The prediction mode used.
Definition: blockd.h:232
int qindex[8]
Definition: blockd.h:817
uint8_t * tx_type_map
Definition: blockd.h:670
int current_base_qindex
Definition: blockd.h:832
PARTITION_TYPE partition
The partition type of the current coding block.
Definition: blockd.h:230
uint8_t segment_id
The segment id.
Definition: blockd.h:310
bool left_available
Definition: blockd.h:630
uint8_t compound_idx
Indicates whether dist_wtd_comp(0) is used or not (0).
Definition: blockd.h:322
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:744
uint8_t use_intrabc
Whether intrabc is used.
Definition: blockd.h:318
bool is_first_horizontal_rect
Definition: blockd.h:796
uint8_t * tmp_obmc_bufs[2]
Definition: blockd.h:931
int8_t cdef_strength
CDEF strength per BLOCK_64X64.
Definition: blockd.h:326
int_mv mv[2]
The motion vectors used by the current inter mode.
Definition: blockd.h:244
int mb_to_right_edge
Definition: blockd.h:682
int lossless[8]
Definition: blockd.h:821
bool up_available
Definition: blockd.h:626
uint8_t comp_group_idx
Indicates if masked compound is used(1) or not (0).
Definition: blockd.h:320
struct aom_internal_error_info * error_info
Definition: blockd.h:842
uint8_t seg_id_predicted
Only valid when temporal update if off.
Definition: blockd.h:312
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:722
int mi_col
Definition: blockd.h:580
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:656
CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:780
const WarpedMotionParams * global_motion
Definition: blockd.h:847
Parameters related to Sgrproj Filter.
Definition: blockd.h:507
PALETTE_MODE_INFO palette_mode_info
Stores the size and colors of palette mode.
Definition: blockd.h:280
WienerInfo wiener_info[3]
Definition: blockd.h:761
bool cdef_transmitted[4]
Definition: blockd.h:888
uint8_t skip_mode
Inter skip mode.
Definition: blockd.h:316
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:707
uint8_t cfl_alpha_idx
Chroma from Luma: Index of the alpha Cb and alpha Cr combination.
Definition: blockd.h:278
const struct scale_factors * block_ref_scale_factors[2]
Definition: blockd.h:691
uint8_t neighbors_ref_counts[REF_FRAMES]
Definition: blockd.h:802
int mb_to_bottom_edge
Definition: blockd.h:684
MOTION_MODE motion_mode
The motion mode used by the inter prediction.
Definition: blockd.h:250
int8_t delta_lf_from_base
Definition: blockd.h:857
MB_MODE_INFO * above_mbmi
Definition: blockd.h:649
bool chroma_left_available
Definition: blockd.h:638
uint8_t width
Definition: blockd.h:769
int current_qindex
The q index for the current coding block.
Definition: blockd.h:236
YV12 frame buffer data structure.
Definition: yv12config.h:39
UV_PREDICTION_MODE uv_mode
The UV mode when intra is used.
Definition: blockd.h:234
CFL_CTX cfl
Definition: blockd.h:898
bool is_last_vertical_rect
Definition: blockd.h:791
MB_MODE_INFO ** mi
Definition: blockd.h:621
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:714
int ep
Definition: blockd.h:511
Variables related to current coding block.
Definition: blockd.h:574
WarpedMotionParams wm_params
The parameters used in warp motion mode.
Definition: blockd.h:257
uint8_t skip_txfm
Whether to skip transforming and sending.
Definition: blockd.h:288
bool chroma_up_available
Definition: blockd.h:634
uint8_t height
Definition: blockd.h:770
INTERINTER_COMPOUND_DATA interinter_comp
Struct that stores the data used in interinter compound mode.
Definition: blockd.h:263
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
uint8_t num_proj_ref
Number of samples used by warp causal.
Definition: blockd.h:252
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
int8_t delta_lf_from_base
Definition: blockd.h:300
int tx_type_map_stride
Definition: blockd.h:675
int8_t delta_lf[FRAME_LF_COUNT]
Definition: blockd.h:872
FRAME_CONTEXT * tile_ctx
Definition: blockd.h:807
TX_SIZE tx_size
Transform size when fixed size txfm is used (e.g. intra modes).
Definition: blockd.h:290
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:737
TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]
Transform size when recursive txfm tree is on.
Definition: blockd.h:292
MB_MODE_INFO * left_mbmi
Definition: blockd.h:644
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:663
int bd
Definition: blockd.h:812
uint16_t color_index_map_offset[2]
Definition: blockd.h:909
INTERINTRA_MODE interintra_mode
The type of intra mode used by inter-intra.
Definition: blockd.h:259
int mb_to_top_edge
Definition: blockd.h:683
uint8_t use_wedge_interintra
Whether to use interintra wedge.
Definition: blockd.h:324
uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]
Definition: blockd.h:785
int mi_stride
Definition: blockd.h:586
int_interpfilters interp_filters
Filter used in subpel interpolation.
Definition: blockd.h:248
int cur_frame_force_integer_mv
Definition: blockd.h:837
int8_t cfl_alpha_signs
Chroma from Luma: Joint sign of alpha Cb and alpha Cr.
Definition: blockd.h:276
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:729