
Eclipse MicroProfile OpenTracing
Steve Fontes, Heiko W. Rupp, Pavol Loffay

1.0.2, January 21, 2020

Table of Contents
1. Introduction. 2

2. Rationale. 3

3. Architecture . 4

3.1. Enabling distributed tracing with no code instrumentation . 4

3.1.1. Tracer configuration . 4

3.1.2. Span creation for inbound requests . 5

Server Span name . 5

Server Span tags . 5

3.1.3. Span creation and injection for outbound requests . 5

Client Span name . 5

Client Span tags . 5

3.2. Enabling explicit distributed tracing code instrumentation . 6

3.2.1. The traced annotation . 6

3.2.2. Access to the configured tracer . 7

4. Impact on existing code . 8

5. Alternatives considered . 9

Specification: Eclipse MicroProfile OpenTracing

Version: 1.0.2

Status: Final

Release: January 21, 2020

Copyright (c) 2016-2017 Eclipse Microprofile Contributors:
Steve Fontes, Heiko W. Rupp, Pavol Loffay

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Chapter 1. Introduction
Distributed tracing allows you to trace the flow of a request across service boundaries. This is
particularly important in a microservices environment where a request typically flows through
multiple services. To accomplish distributed tracing, each service must be instrumented to log
messages with a correlation id that may have been propagated from an upstream service. A
common companion to distributed trace logging is a service where the distributed trace records can
be stored. See also examples on opentracing.io. The storage service for distributed trace records can
provide features to view the cross service trace records associated with particular request flows.

It will be useful for services written in the MicroProfile framework to be able to integrate well with
a distributed trace system that is part of the larger microservices environment. This specification
defines an API and MicroProfile behaviors that allow services to easily participate in an
environment where distributed tracing is enabled.

This specification specifically addresses the problem of making it easy to instrument services with
distributed tracing function, given an existing distributed tracing system in the environment.

This specification specifically does not address the problem of defining, implementing, or
configuring the underlying distributed tracing system. The proposal assumes an environment
where all services use a common OpenTracing implementation (all Zipkin compatible, all Jaeger
compatible, …).

The information about a Span that is propagated between services is typically called a SpanContext.
It is not the intent of this specification to define the exact format for how SpanContext information
is stored or propagated. Our use case is for applications running in an environment where all
applications use the same Tracer implementation, and microservices that require explicit tracing
logic use the OpenTracing API. Work on defining standard wire protocols and consistent APIs for
handling trace (and metric) data is being done at OpenCensus. The OpenCensus API appears very
similar to OpenTracing, but support for OpenCensus Tracers will require a separate MicroProfile
specification.

2

http://opentracing.io/documentation/pages/supported-tracers.html
http://opencensus.io/

Chapter 2. Rationale
In order for a distributed tracing system to be effective and usable, two things are required

1. The different services in the environment must agree on the mechanism for transferring
correlation ids across services.

2. The different services in the environment should produce their trace records in format that is
consumable by the storage service for distributed trace records.

Without the first, some services will not be included in the trace records associated with a request.
Without the second, custom code would need to be written to present the information about a full
request flow.

There are existing distributed tracing systems that provide a server for distributed trace record
storage and viewing, and application libraries for instrumenting microservices. The problem is that
the different distributed tracing systems use implementation specific mechanisms for propagating
correlation IDs and for formatting trace records, so once a microservice chooses a distributed
tracing implementation library to use for its instrumentation, all other microservices in the
environment are locked into the same choice.

The OpenTracing project’s purpose is to provide a standard API for instrumenting microservices for
distributed tracing. If every microservice is instrumented for distributed tracing using the
OpenTracing API, then (as long as an implementation library exists for the microservice’s
language), the microservice can be configured at deploy time to use a common system
implementation to perform the log record formatting and cross service correlation id propagation.
The common implementation ensures that correlation ids are propagated in a way that is
understandable to all services, and log records are formatted in a way that is understandable to the
server for distributed trace record storage.

In order to make MicroProfile distributed tracing friendly, it will be useful to allow distributed
tracing to be enabled on any MicroProfile application, without having to explicitly add distributed
tracing code to the application.

In order to make MicroProfile as flexible as possible for adding distributed trace log records,
MicroProfile should expose whatever objects are necessary for an application to use the
OpenTracing API.

3

http://opentracing.io/

Chapter 3. Architecture
This specification defines an easy way to allow an application running in a MicroProfile container
to take advantage of distributed tracing by using an OpenTracing Tracer implementation. This
document and implementations MUST comply with OpenTracing specification and semantic
conventions if it is not defined otherwise.

There are two operation modes

• Without instrumentation of application code

• With explicit code instrumentation

3.1. Enabling distributed tracing with no code
instrumentation
The MicroProfile implementation will allow JAX-RS applications to participate in distributed
tracing, without requiring developers to add any distributed tracing code into their applications,
and without requiring developers to know anything about the distributed tracing environment that
their JAX-RS application will be deployed into.

1. The MicroProfile implementation must provide a mechanism to configure an
io.opentracing.Tracer implementation for use by each JAX-RS application.

2. The MicroProfile implementation must provide a mechanism to automatically extract
SpanContext information from any incoming JAX-RS request.

3. The MicroProfile implementation must provide a mechanism to automatically start a Span for
any incoming JAX-RS request, and finish the Span when the request completes.

4. The MicroProfile implementation must provide a mechanism to automatically inject
SpanContext information into any outgoing JAX-RS request.

5. The MicroProfile implementation must provide a mechanism to automatically start a Span for
any outgoing JAX-RS request, and finish the Span when the request completes.

Correct parent child relationships between incoming requests and outgoing requests are handled
automatically, as long as the outgoing requests occur on the same thread as the incoming request. If
outgoing requests are performed on a different thread than the incoming request, it is the
developers responsibility to propagate the Tracer context between threads.

3.1.1. Tracer configuration

An implementation of an io.opentracing.Tracer must be made available to each application. Each
application will have its own Tracer instance. The Tracer must be configurable outside of the
application to match the distributed tracing environment where the application is deployed. For
example, it should be possible to take the exact same application and deploy it to an environment
where Zipkin is in use, and to deploy the application without modification to a different
environment where Jaeger is in use, and the application should report Spans correctly in either
environment.

4

3.1.2. Span creation for inbound requests

When a request arrives at a JAX-RS endpoint, configured Tracer instance is used to extract a
SpanContext from the inbound request. The extracted context is used as a child of reference for a
new Span created for this endpoint.

Server Span name

The default operation name of the new Span for the incoming request is

<HTTP method>:<package name>.<class name>.<method name>

Server Span tags

Spans created for incoming requests will have the following tags added by default:

• Tags.SPAN_KIND = Tags.SPAN_KIND_SERVER

• Tags.HTTP_METHOD

• Tags.HTTP_URL

• Tags.HTTP_STATUS

• Tags.ERROR (if true)

Tags.SPAN_KIND MUST be specified at Span start time.

Tags.ERROR tag SHOULD be added to a Span on failed operations for any server error (5xx) codes. If
there is an exception object available the implementation SHOULD also add logs event=error and
error.object=<error object instance> to the active span.

3.1.3. Span creation and injection for outbound requests

When a request is sent from a JAX-RS javax.ws.rs.client.Client, a new Span is created and its
SpanContext is injected in the outbound request for propagation downstream. The new Span will
be a child of the active Span if an active Span exists. The new Span will be finished when the
outbound request is completed.

Client Span name

The default operation name of the new Span for the outgoing request is

<HTTP method>

Client Span tags

Spans created for outgoing requests will have the following tags added by default:

• Tags.SPAN_KIND = Tags.SPAN_KIND_CLIENT

• Tags.HTTP_METHOD

5

• Tags.HTTP_URL

• Tags.HTTP_STATUS

• Tags.ERROR (if true)

Tags.SPAN_KIND MUST be specified at Span start time.

Tags.ERROR tag SHOULD be added to a Span on failed operations for any client error (4xx) codes. If
there is an exception object available the implementation SHOULD also add logs event=error and
error.object=<error object instance> to the active span.

3.2. Enabling explicit distributed tracing code
instrumentation
An annotation is provided to define explicit Span creation. This works on top of the "no-action"
setup described in Enabling distributed tracing with no code instrumentation.

• @Traced: Specify a class or method to be traced.

3.2.1. The traced annotation

The @Traced annotation, applies to a class or a method. When applied to a class, the @Traced
annotation is applied to all methods of the class. If the annotation is applied to a class and method
then the annotation applied to the method takes precedence. The annotation starts a Span at the
beginning of the method, and finishes the Span at the end of the method.

The @Traced annotation has two optional arguments.

• value=[true|false]. Defaults to true. If @Traced is specified at the class level, then @Traced(false)
is used to annotate specific methods to disable creation of a Span for those methods. By default
all JAX-RS endpoint methods are traced. To disable Span creation of a specific JAX-RS endpoint,
the @Traced(false) annotation can be used.

When the @Traced(false) annotation is used for a JAX-RS endpoint method, the upstream
SpanContext will not be extracted. Any Spans created, either automatically for outbound
requests, or explicitly using an injected Tracer, will not have an upstream parent Span in the
Span hierarchy.

• operationName=<Name for the Span>. Default is "". If the @Traced annotation finds the
operationName as "", the default operation name is used. For a JAX-RS endpoint method (see
Server Span name). If the annotated method is not a JAX-RS endpoint, the default operation
name of the new Span for the method is <package name>.<class name>.<method name>. If
operationName is specified on a class, that operationName will be used for all methods of the class
unless a method explicitly overrides it with its own operationName.

Example:

6

@InterceptorBinding
@Target({ TYPE, METHOD })
@Retention(RUNTIME)
public @interface Traced {
 @Nonbinding
 boolean value() default true;
 @Nonbinding
 String operationName() default "";
}

3.2.2. Access to the configured tracer

This proposal also specifies that the underlying OpenTracing Tracer object configured instance is
available for developer use. The MicroProfile implementation will make the configured Tracer
available with CDI injection.

The configured Tracer object is accessed by injecting the Tracer class that has been configured for
the particular application for this environment. Each application gets a different Tracer instance.

Example:

@Inject
io.opentracing.Tracer configuredTracer;

The Tracer object enables support for the more complex tracing requirements, such as creating
spans inside business methods.

Access to the Tracer also allows tags, logs and baggage to be added to Spans with, for example:

configuredTracer.activeSpan().setTag(...);
configuredTracer.activeSpan().log(...);
configuredTracer.activeSpan().setBaggage(...);

7

Chapter 4. Impact on existing code
@Traced annotations can be added to existing code. A configured Tracer object can be accessed with
CDI injection.

8

Chapter 5. Alternatives considered
Current mechanisms require a decision at development time about the distributed trace system
that will be used. This feature allows the decision to be made at the operational environment level.

9

	Eclipse MicroProfile OpenTracing
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Rationale
	Chapter 3. Architecture
	3.1. Enabling distributed tracing with no code instrumentation
	3.1.1. Tracer configuration
	3.1.2. Span creation for inbound requests
	Server Span name
	Server Span tags

	3.1.3. Span creation and injection for outbound requests
	Client Span name
	Client Span tags

	3.2. Enabling explicit distributed tracing code instrumentation
	3.2.1. The traced annotation
	3.2.2. Access to the configured tracer

	Chapter 4. Impact on existing code
	Chapter 5. Alternatives considered

